Large Margin Boltzmann Machines and Large Margin Sigmoid Belief Networks
نویسندگان
چکیده
Current statistical models for structured prediction make simplifying assumptions about the underlying output graph structure, such as assuming a low-order Markov chain, because exact inference becomes intractable as the tree-width of the underlying graph increases. Approximate inference algorithms, on the other hand, force one to trade off representational power with computational efficiency. In this paper, we propose two new types of probabilistic graphical models, large margin Boltzmann machines (LMBMs) and large margin sigmoid belief networks (LMSBNs), for structured prediction. LMSBNs in particular allow a very fast inference algorithm for arbitrary graph structures that runs in polynomial time with a high probability. This probability is data-distribution dependent and is maximized in learning. The new approach overcomes the representationefficiency trade-off in previous models and allows fast structured prediction with complicated graph structures. We present results from applying a fully connected model to multi-label scene classification and demonstrate that the proposed approach can yield significant performance gains over current state-of-the-art methods.
منابع مشابه
Large Margin Boltzmann Machines
Boltzmann Machines are a powerful class of undirected graphical models. Originally proposed as artificial neural networks, they can be regarded as a type of Markov Random Field in which the connection weights between nodes are symmetric and learned from data. They are also closely related to recent models such as Markov logic networks and Conditional RandomFields. Amajor challenge for Boltzmann...
متن کاملConnectionist Learning of Belief Networks
Neal, R.M., Connectionist learning of belief networks, Artificial Intelligence 56 (1992) 71-113. Connectionist learning procedures are presented for "sigmoid" and "noisy-OR" varieties of probabilistic belief networks. These networks have previously been seen primarily as a means of representing knowledge derived from experts. Here it is shown that the "Gibbs sampling" simulation procedure for s...
متن کاملLiquid-liquid equilibrium data prediction using large margin nearest neighbor
Guanidine hydrochloride has been widely used in the initial recovery steps of active protein from the inclusion bodies in aqueous two-phase system (ATPS). The knowledge of the guanidine hydrochloride effects on the liquid-liquid equilibrium (LLE) phase diagram behavior is still inadequate and no comprehensive theory exists for the prediction of the experimental trends. Therefore the effect the ...
متن کاملAdvances in Deep Learning
Deep neural networks have become increasingly more popular under the name of deep learning recently due to their success in challenging machine learning tasks. Although the popularity is mainly due to the recent successes, the history of neural networks goes as far back as 1958 when Rosenblatt presented a perceptron learning algorithm. Since then, various kinds of artificial neural networks hav...
متن کاملFoundations and Advances in Deep Learning
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Kyunghyun Cho Name of the doctoral dissertation Foundations and Advances in Deep Learning Publisher Unit Department of Information and Computer Science Series Aalto University publication series DOCTORAL DISSERTATIONS 21/2014 Field of research Machine Learning Manuscript submitted 2 September 2013 Date of the defence 21 March ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1003.4781 شماره
صفحات -
تاریخ انتشار 2010